equivariant estimate - significado y definición. Qué es equivariant estimate
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es equivariant estimate - definición

Equivariant homology theory; Borel construction; Equivariant cohomology ring; Equivariant cohomogy ring; Equivariant characteristic class; Draft:Equivariant homology

Equivariant cohomology         
In mathematics, equivariant cohomology (or Borel cohomology) is a cohomology theory from algebraic topology which applies to topological spaces with a group action. It can be viewed as a common generalization of group cohomology and an ordinary cohomology theory.
Equivariant map         
  • The centroid of a triangle (where the three red segments meet) is equivariant under [[affine transformation]]s: the centroid of a transformed triangle is the same point as the transformation of the centroid of the triangle.
MAPS WHOSE DOMAIN AND CODOMAIN ARE ACTED ON BY THE SAME GROUP, AND THE FUNCTION COMMUTES
Intertwiner; Intertwining map; Equivariance; Intertwining operator; Equivariant; Equivariant morphism
In mathematics, equivariance is a form of symmetry for functions from one space with symmetry to another (such as symmetric spaces). A function is said to be an equivariant map when its domain and codomain are acted on by the same symmetry group, and when the function commutes with the action of the group.
Equivariant topology         
STUDY OF SPACES WITH GROUP ACTIONS
Equivariant algebraic topoloy
In mathematics, equivariant topology is the study of topological spaces that possess certain symmetries. In studying topological spaces, one often considers continuous maps f: X \to Y, and while equivariant topology also considers such maps, there is the additional constraint that each map "respects symmetry" in both its domain and target space.

Wikipedia

Equivariant cohomology

In mathematics, equivariant cohomology (or Borel cohomology) is a cohomology theory from algebraic topology which applies to topological spaces with a group action. It can be viewed as a common generalization of group cohomology and an ordinary cohomology theory. Specifically, the equivariant cohomology ring of a space X {\displaystyle X} with action of a topological group G {\displaystyle G} is defined as the ordinary cohomology ring with coefficient ring Λ {\displaystyle \Lambda } of the homotopy quotient E G × G X {\displaystyle EG\times _{G}X} :

H G ( X ; Λ ) = H ( E G × G X ; Λ ) . {\displaystyle H_{G}^{*}(X;\Lambda )=H^{*}(EG\times _{G}X;\Lambda ).}

If G {\displaystyle G} is the trivial group, this is the ordinary cohomology ring of X {\displaystyle X} , whereas if X {\displaystyle X} is contractible, it reduces to the cohomology ring of the classifying space B G {\displaystyle BG} (that is, the group cohomology of G {\displaystyle G} when G is finite.) If G acts freely on X, then the canonical map E G × G X X / G {\displaystyle EG\times _{G}X\to X/G} is a homotopy equivalence and so one gets: H G ( X ; Λ ) = H ( X / G ; Λ ) . {\displaystyle H_{G}^{*}(X;\Lambda )=H^{*}(X/G;\Lambda ).}